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ABSTRACT

Aims. This study is motivated by observations of coordinated transverse displacements in neighboring solar active region loops,
addressing specifically how the behavior of kink motions in straight two-tube equilibria is impacted by tube interactions and tube
cross-sectional shapes.
Methods. We work with linear, ideal, pressureless magnetohydrodynamics. Axially standing kink motions are examined as an initial
value problem for transversely structured equilibria involving two identical, field-aligned, density-enhanced tubes with elliptic cross-
sections (elliptic tubes). Continuously nonuniform layers are implemented around both tube boundaries. We numerically follow the
system response to external velocity drivers, largely focusing on the quasi-mode stage of internal flows to derive the pertinent periods
and damping times.
Results. The periods and damping times we derive for two-circular-tube setups justify available modal results found with the T-matrix
approach. Regardless of cross-sectional shapes, our nonuniform layers feature the development of small-scale shears and energy
accumulation around Alfvén resonances, indicative of resonant absorption and phase-mixing. As with two-circular-tube systems, our
configurational symmetries make it still possible to classify lower-order kink motions by the polarization and symmetric properties of
the internal flows; hence such mode labels as S x and Ax. However, the periods and damping times for two-elliptic-tube setups further
depend on cross-sectional aspect ratios, with Ax motions occasionally damped less rapidly than S x motions. We find uncertainties
up to ∼ 20% (∼ 50%) for the axial Alfvén time (the inhomogeneity lengthscale) if the periods (damping times) computed for two-
elliptic-tube setups are seismologically inverted with canonical theories for isolated circular tubes.
Conclusions. The effects of loop interactions and cross-sectional shapes need to be considered when the periods and particularly the
damping times are seismologically exploited for coordinated transverse displacements in adjacent coronal loops.
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1. Introduction

Cyclic transverse displacements of solar coronal loops are arguably the most extensively observed collective motion in modern solar
coronal seismology (see e.g., Nakariakov & Kolotkov 2020; Nakariakov et al. 2021, for recent reviews). Two regimes have been
established. The decayless regime is such that the displacements show little damping and their magnitudes are usually substantially
smaller than visible loop widths, with both features already clear when this regime was first identified in measurements with Hinode
(Tian et al. 2012) and the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA; Wang et al. 2012; Nisticò et al.
2013; Anfinogentov et al. 2013). This regime is known not to be connected with eruptive events but ubiquitous in active region (AR)
loops, as evidenced by a statistical survey of the SDO/AIA data (Anfinogentov et al. 2015) and by the recent series of analyses of the
measurements with the Extreme Ultraviolet Imager (EUI) on board the Solar Orbiter (e.g., Zhong et al. 2022; Petrova et al. 2023;
Zhong et al. 2023). Decaying loop displacements, on the other hand, typically damp over several cycles and are of larger amplitudes
as revealed by their first imaging observations by the Transition Region and Coronal Explorer (TRACE; Schrijver et al. 1999;
Aschwanden et al. 1999; Nakariakov et al. 1999). These decaying motions are usually associated with lower coronal eruptions
(Zimovets & Nakariakov 2015). Regardless, there exist ample detections of decaying displacements, an inexhaustive list being
those by Hinode (Ofman & Wang 2008; Van Doorsselaere et al. 2008a; Erdélyi & Taroyan 2008), the Solar TErrestrial RElations
Observatories (STEREO; Verwichte et al. 2009), and by SDO/AIA (Aschwanden & Schrijver 2011; White & Verwichte 2012).
Statistical studies therefore prove possible either through compiling published results (e.g., Verwichte et al. 2013) or via directly
cataloging the SDO/AIA events (Goddard et al. 2016; Nechaeva et al. 2019). Decaying cyclic displacements were specifically
established to be nearly exclusively axial fundamentals (e.g., Fig.9 in Goddard et al. 2016 and Fig.5 in Nechaeva et al. 2019).

Seismological applications of cyclic transverse displacements typically start with their identification as trapped fast kink mo-
tions. Practically, this identification largely relies on the scheme for classifying collective motions in straight, static, field-aligned
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configurations where isolated density-enhanced tubes with circular cross-sections (circular tubes hereafter) are embedded in an
otherwise uniform corona (Edwin & Roberts 1983, ER83; also Zajtsev & Stepanov 1975; Cally 1986). That the configuration is
structured only transversely and in a one-dimensional (1D) manner means that the azimuthal wavenumber m makes physical sense,
with kink motions corresponding to m = 1 (see the textbooks by Roberts 2019 and Goedbloed et al. 2019). Let “ER83 equilibria”
label specifically those where the transverse structuring is piecewise constant. The relevant theories then enable the measured pe-
riods of axially standing kink motions to be employed to infer the axial Alfvén time and hence the coronal magnetic field strength
for decayless (e.g., Anfinogentov & Nakariakov 2019; Li & Long 2023) and decaying regimes alike (Nakariakov & Ofman 2001;
also the reviews by e.g., Nakariakov & Verwichte 2005; De Moortel & Nakariakov 2012; Nakariakov et al. 2021). While undamped
for ER83 equilibria, trapped fast kink motions are in general resonantly absorbed in the Alfvén continuum when the 1D struc-
turing is allowed to be continuous (Ruderman & Roberts 2002; Goossens et al. 2002, and references therein). Theoretically, the
concept of kink quasi-modes then arises and the internal kink motions are damped in conjunction with the accumulation and phase-
mixing of localized Alfvénic motions (e.g., Poedts & Kerner 1991; Tirry & Goossens 1996; Soler et al. 2013; also the review by
Goossens et al. 2011). Seismologically, resonant absorption has been customarily invoked to interpret the decay of large-amplitude
loop displacements, thereby allowing the measured damping times to be employed to deduce such key parameters as the transverse
inhomogeneity lengthscales (e.g., Aschwanden et al. 2003; Goossens et al. 2008; Arregui & Asensio Ramos 2011; Arregui et al.
2015; Arregui 2022).

Deviations from the canonical ER83 equilibria are known to impact the behavior of collective motions, and we choose to focus
on two geometrical properties that render the meaning of the azimuthal wavenumber not as clear (e.g., the review by Li et al. 2020).
One concerns loop cross-sections, which may actually be tied to coronal heating via their key role in determining the morphology
of coronal loops in, say, soft X-ray (Klimchuk et al. 1992) and EUV (Watko & Klimchuk 2000) in the first place. Recent imaging
observations with Hi-C (Klimchuk & DeForest 2020) and Hi-C 2.1 (Williams et al. 2021) suggest that AR loops may maintain a
circular cross-section throughout their visible segments. However, there also exist suggestions that favor elliptic cross-sections to
better account for the morphology of AR loops, as deduced with the aid of coronal magnetic field modeling (e.g., Wang & Sakurai
1998; Malanushenko & Schrijver 2013) and/or multi-vantage-point measurements with STEREO (e.g., McCarthy et al. 2021). In
particular, the derived aspect ratios may readily attain ∼ 1.5 − 5 (Malanushenko & Schrijver 2013), a range also compatible with
the spectroscopic measurements with Hinode/EUV Imaging Spectrometer (EIS; Kucera et al. 2019). Restrict ourselves to straight
configurations where coronal loops preserve a constant elliptic cross-section along their axes (elliptic tubes hereafter). Substantial
attention has been paid to collective perturbations in such equilibria from both the modal (e.g., Ruderman 2003; Erdélyi & Morton
2009; Morton & Ruderman 2011; Aldhafeeri et al. 2021) and initial-value-problem (IVP) perspectives (Guo et al. 2020). Despite the
lack of axisymmetry, kink motions remain identifiable as those that transversely displace the tube axes, and in general they remain
subjected to resonant absorption for continuous transverse structuring. However, as was first shown by Ruderman (2003), one now
needs to discriminate two distinct polarizations, where the internal flows are primarily directed along the major (“major-polarized”
for brevity) and minor axes (“minor-polarized”), respectively. In addition, the periods of major-(minor-) polarized kink motions
increase (decrease) with the major-to-minor-axis ratio, while the damping times for both polarizations tend to increase with this
ratio. It was further demonstrated that the density contrast between elliptic tubes and their surrounding fluids play a subtle role in
mediating the differences between the dispersive properties of the differently polarized motions (Guo et al. 2020).

Another geometrical property pertains to systems involving multiple tubular structures. Observationally, it has long been known
that perturbations in such systems may evolve collectively, an incomplete list of examples being the coordinated transverse displace-
ments detected either in groups of prominence threads (e.g., Yi et al. 1991; Lin et al. 2003; Okamoto et al. 2007; also the review
by Arregui et al. 2018) or in neighboring AR loops (e.g., Schrijver & Brown 2000; Schrijver et al. 2002; Verwichte et al. 2004;
Wang et al. 2012; White et al. 2013). Kink motions in straight multi-circular-tube systems have also been extensively examined
theoretically. We choose to concentrate on the modal analyses where a harmonic time-dependence is assumed a priori, noting that
multi-dimensional IVP studies prove equally informative (e.g., Terradas et al. 2008b; Ofman 2009; Magyar & Van Doorsselaere
2016; Guo et al. 2019a). The first modal examination was due to Luna et al. (2008, hereafter L08), who numerically solved the
pertinent eigenvalue problem (EVP) for undamped kink modes in a two-tube system. Broadly speaking, two different approaches
have been employed in further modal studies. The ensuing EVPs turn out to be analytically tractable in the thin-tube (TT) limit for
two-tube equilibria when formulated in bi-cylindrical coordinates, for both undamped (Van Doorsselaere et al. 2008b; Robertson
et al. 2010; Ruderman & Petrukhin 2023) and damped kink motions (Robertson & Ruderman 2011; Gijsen & Van Doorsselaere
2014). Similar EVPs have also been formulated with the T-matrix formalism of scattering theory, originally introduced to solar con-
texts by Bogdan & Zweibel (1985, 1987). This formalism is sufficiently general for examining kink motions in composite equilibria
comprising an arbitrary number of circular tubes, with specific investigations available for undamped motions in systems with two
or three (Luna et al. 2009) up to tens of tubes (Luna et al. 2010, 2019). Addressing continuous transverse structuring, the T-matrix
approach proves capable of handling the resonant absorption of collective motions in general (Keppens et al. 1994) and particu-
larly that of kink motions in two-tube equilibria (Soler & Luna 2015, SL15 hereafter). The damping is nonetheless assumed to be
weak by construction, given that it was incorporated in the T-matrix framework exclusively via the thin-boundary (TB) connection
formulae (see SL15 for more details; also see Sakurai et al. 1991 for the first derivation of the TB formulae). Regardless, kink
motions are known to be much more complicated in multi-tube equilibria than for isolated circular tubes, and we restrict ourselves
to two-identical-tube systems. It was shown by L08 (see Fig.2 therein) that kink motions, namely those that displace both tube axes,
need to be classified according to both the polarization and symmetric properties of the two internal flows. The notions of S x, Ax,
S y, and Ay then ensue, one subtlety being that the S x − Ay and Ax − S y pairs become indistinguishable in terms of frequencies (Van
Doorsselaere et al. 2008b) and damping rates (SL15) when the tubes are sufficiently thin. This subtlety notwithstanding, Ax motions
always turn out to oscillate and damp more rapidly than S x motions: the differences between the frequencies and particularly the
damping rates may be substantial enough to impact seismological deductions (see Fig.4 in SL15).
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This study is intended to examine damped lower-order kink motions in a two-identical-elliptic-tube system, thereby addressing
the situation where neither the equilibrium configuration as a whole nor an individual tube allows the azimuthal wavenumber to
make exact sense. We will adopt linear, pressureless, ideal magnetohydrodynamics (MHD) throughout, given that quiescent AR
loops are of primary interest. We will adopt an IVP perspective, paying particular attention to the frequencies and damping rates
of axially standing motions by largely focusing on the duration where the concept of quasi-modes applies. Our study is new in the
following two aspects. Firstly, two-elliptic-tube systems have yet to be explored in the context of collective waves, meaning that
our study will shed new light on how the dispersive properties of kink motions are impacted by the joint effects of tube interactions
and tube cross-sectional shapes. When put to seismological contexts, our results can therefore help assess the uncertainties in the
key physical parameters that one deduces with the customary practice where the joints effects are absent. Secondly, there exist no
IVP studies dedicated to the dispersive properties of damped kink motions in two-tube systems to our knowledge. Our numerical
analysis, conducted with a self-developed code, will therefore help verify the T-matrix results obtained by SL15.

The outline of this manuscript is as follows. Section 2 offers the mathematical formulation of our IVP together with a description
of our numerical code. We then focus on circular tubes in Sect.3, testing our code outputs against available results obtained with
independent approaches. Section 4 proceeds to present our numerical results for two-elliptic-tube systems. The findings of this study
are summarized in Sect.5, where some concluding remarks are also given.

2. Problem Formulation and Solution Method

2.1. Governing Equations

We adopt pressureless, ideal MHD as our theoretical framework, in which the primitive dependents are the mass density ρ, velocity
v, and magnetic field B. Let (x, y, z) be a Cartesian system, and let the equilibrium quantities be denoted with a subscript 0. We
take the equilibrium magnetic field to be uniform and z-directed (B0 = B0ez). Only straight, static, field-aligned configurations are
of interest, meaning that v0 = 0 and the structuring is encapsulated in ρ0(x, y). The Alfvén speed vA is defined by v2

A = B2
0/µ0ρ0,

where µ0 is the magnetic permeability of free space. With magnetically closed structures in mind, we place two dense photospheres
at z = 0 and z = L.

We formulate an IVP to examine how our equilibrium responds to small-amplitude perturbations (denoted by subscript 1). It
follows from linearized, ideal, pressureless MHD equations that

ρ0
∂v1x

∂t
=

B0

µ0

(
∂B1x

∂z
−
∂B1z

∂x

)
, (1)

ρ0
∂v1y

∂t
=

B0

µ0

(
∂B1y

∂z
−
∂B1z

∂y

)
, (2)

∂B1x

∂t
= B0

∂v1x

∂z
, (3)

∂B1y

∂t
= B0

∂v1y

∂z
, (4)

∂B1z

∂t
= −B0

(
∂v1x

∂x
+
∂v1y

∂y

)
. (5)

We focus on axially standing motions by adopting the ansatz

v1x(x, y, z; t) = v̂x(x, y; t) sin(kz),
v1y(x, y, z; t) = v̂y(x, y; t) sin(kz),

B1x(x, y, z; t) = B̂x(x, y; t) cos(kz),

B1y(x, y, z; t) = B̂y(x, y; t) cos(kz),

B1z(x, y, z; t) = B̂z(x, y; t) sin(kz), (6)

where k = nπ/L is the quantized axial wavenumber (n = 1, 2, · · · ). Equations (1) to (5) then become

∂v̂x

∂t
= −

B0

µ0ρ0

(
kB̂x +

∂B̂z

∂x

)
, (7)

∂v̂y

∂t
= −

B0

µ0ρ0

(
kB̂y +

∂B̂z

∂y

)
, (8)

∂B̂x

∂t
= kB0v̂x, (9)

∂B̂y

∂t
= kB0v̂y, (10)

∂B̂z

∂t
= −B0

(
∂v̂x

∂x
+
∂v̂y

∂y

)
. (11)
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Axial fundamentals (k = π/L) will be examined throughout, even though our analysis can be readily adapted to any axial harmonic
number n.

2.2. Energy Conservation Law

Energetics considerations turn out to be necessary. Consider a volume V that laterally occupies an arbitrary area Q and is axially
bounded by the planes z = 0 and z = L. Let the curve enclosing Q be denoted by ∂Q. Let [en, et, ez] further define a right-handed set
of orthonormal system at any point along ∂Q, with the normal direction en pointing away from Q. An energy conservation law can
be readily derived from Eqs. (1) to (5), reading

dE(t)
dt
= −F(t), (12)

where

E(t) =
∫

Q
ϵdxdy, (13)

F(t) =
∮
∂Q

dlten · p̂T

(
v̂xex + v̂yey

)
, (14)

ϵ(x, y; t) =
1
2
ρ0

(
v̂2

x + v̂2
y

)
+

1
2µ0

(
B̂2

x + B̂2
y + B̂2

z

)
. (15)

Note that the ansatz (6) has been employed, and p̂T = B0B̂z/µ0 is connected with the Eulerian perturbation of total pressure. Note
also that dlt denotes the elementary arclength in the tangential direction defined by et. When multiplied by L/2, the symbols E and
F represent the instantaneous perturbation energy in V and the net energy flux out of V , respectively. We nonetheless refer to E (F)
as the total energy (the net energy flux) for brevity. Likewise, the symbol ϵ in Eqs. (13) and (15) will be referred to as the energy
density. We also drop the hat from here onward.

2.3. Equilibrium Configuration and Initial Perturbation

Our equilibrium comprises a composite structure embedded in an otherwise uniform external corona (denoted by subscript e). By
“composite” we mean two identical tubes with elliptic cross-sections and separated by d. Let j label a tube, and let a 2D position
vector X j = (X j,Y j) denote the center of tube j. The tube centers are placed on the x-axis without loss of generality, enabling a
tube to be referred to as either the left ( j = L) or the right tube ( j = R). The tube centers are further taken to be symmetric about
x = 0, resulting in XL,R = ∓d/2 and YL,R = 0. We consistently use subscript i to denote the equilibrium quantities at either tube axis,
meaning in particular that the internal density and Alfvén speed are denoted by ρi and vAi, respectively. Likewise, by vAe we denote
the Alfvén speed evaluated with the external density ρe.

Our two-tube structure is characterized as follows. The tubes are taken to be identical not only in cross-sectional shapes but
in their orientations relative to the x-axis. For simplicity, we consider only two orientations by discriminating whether the major
(hereafter “x-major”) or minor axis (“x-minor”) of a tube aligns with the x-direction. Let ax and ay denote the spatial extent that
a tube spans in the x- and y-directions, respectively. The x-major (x-minor) orientation then means that ax > ay (ax < ay). Both
orientations are realized by the density distribution ( j = L or R),

ρ j(x, y) =


ρi, 0 ≤ r̄ j ≤ 1 − l̄;

ρi + ρe

2
−
ρi − ρe

2
cos
π(r̄ j − 1)

l̄
, 1 − l̄ ≤ r̄ j ≤ 1,

(16)

with the intermediate dimensionless variable r̄ j defined by

r̄ j(x, y) B

√(
x − X j

ax

)2

+

(
y
ay

)2

. (17)

We take d ≥ 2ax such that tube j can be unambiguously identified as where r̄ j ≤ 1. We also use a (b) to denote the semi-major
(semi-minor) axis, meaning that [ax = a, ay = b] ([ax = b, ay = a]) for the x-major (x-minor) orientation. The symbol b will be
favored when the limiting case of circular tubes is examined (a = b). Equation (16) represents a tube profile that continuously
connects the internal density ρi to the external one ρe via some elliptic layer of width l̄a (l̄b) along the direction of the major (minor)
axis. When a = b, this profile is equivalent to the sinusoidal distribution introduced by Ruderman & Roberts (2002, hereafter
RR02) for modeling circular inhomogeneities (see e.g., Van Doorsselaere et al. 2004; Soler et al. 2013; Chen et al. 2021, for more
applications). Somehow subtle is that the RR02 implementation for a tube centered at (X j, 0) writes

ρ j(x, y) =


ρi, r j ≤ R − ℓ/2;

ρi + ρe

2
−
ρi − ρe

2
sin
π(r j − R)
ℓ

, R − ℓ/2 ≤ r j ≤ R + ℓ/2,

ρe, r j ≥ R + ℓ/2.

(18)

Article number, page 4 of 29



Shi et al.: Damped kink motions in two-elliptic-tube systems

Here r j B
√

(x − X j)2 + y2. Evidently, the geometrical parameters [R, ℓ] characterizing the RR02 implementation are connected to
ours via

b = R + ℓ/2,

l̄ =
ℓ

b
=

ℓ/R

1 + ℓ/2R
. (19)

Our equilibrium configuration, illustrated in Fig. 1b, is a straightened version of a composite system where two tubes are
separated in the x-direction and anchored in the photosphere (Fig. 1a). We see the x- (y-) direction in Fig. 1b as horizontal (vertical)
given that the y − z plane can be identified as the tube plane. For two-tube systems, however, it turns out to be also necessary to
classify lower-order kink motions into the S x, Ax, S y, and Ay types by combining the symmetric and polarization properties of the
internal flow fields (see Fig. 2 in L08). Proposed for two-identical-circular-tube systems, the subscript x (y) arises when the internal
velocities are dominated by their x- (y-)components, while the symbol S (A) is such that the dominant internal velocity component
is symmetric (anti-symmetric) about x = 0. This classification is expected to carry over when elliptic tubes are examined. Somehow
complicated is that one needs to distinguish between the x-major and x-minor arrangements (Figs. 1c and 1d), meaning for instance
that the frequencies of the S x motions are likely to be different for different tube orientations.

Our equilibrium is perturbed via velocities. We consider only S x and Ax motions, given that kink motions are commonly
observed to be horizontally polarized (see Zhong et al. 2023 and references therein; see e.g., Wang et al. 2008 and Aschwanden &
Schrijver 2011 for observational instances of vertical kink motions). Regardless of tube orientations, these are excited by imposing

vini(x, y)
vAe

= e4
{

exp
[
−

( x + xini

b

)2
]
± exp

[
−

( x − xini

b

)2
]}

ex, (20)

where xini = XR+ax+2b, and we recall that [XR = d/2, b = min(ax, ay)]. The coefficient e4 is introduced only for plotting purposes,
the magnitude being immaterial for linear studies. Equation (20) represents a pair of planar compressible perturbations concentrated
in the ambient corona, exciting S x (Ax) motions when the plus (minus) sign applies.

2.4. Parameter Overview and Solution Method

The behavior of small-amplitude perturbations is determined by two sets of parameters. We take the dimensional set to be {ρe, b, vAe},
which serves merely as normalizing constants in our context. Accept that we are primarily interested in such timescales as the
oscillation period and some damping time. The importance of the dimensionless set then follows from a straightforward dimensional
analysis, which dictates that a timescale tscale is formally expressible as

vAetscale

b
= F

[
orientation,

ρi

ρe
,

a
b
, l̄,

d
b

; kb; perturbation pattern
]
. (21)

The subgrouped parameters characterize the transverse structuring, axial wavenumber, and initial perturbation, respectively. By
“orientation” we refer to either “x-major” or “x-minor”. By “perturbation pattern” we mean either S x or Ax. We fix the axial
wavenumber at kb = π/30 throughout, meaning a tube length L = 30b for axial fundamentals. This L/b suffices for our purposes,
lying toward the lower end of but within the accepted range for AR loops imaged in the EUV (e.g., Aschwanden et al. 2004;
Schrijver 2007). Table 1 briefly overviews our computations, which are grouped into four sets to be detailed later. The density
contrast ρi/ρe is fixed at either 3 or 5, both values being representative of AR loops (e.g., Aschwanden et al. 2004, and references
therein). It remains formidable to exhaust the effects of the rest of the parameters, and we choose to fix many.

We solve Eqs. (7) to (11) with the following procedure. A computational domain [−xM, xM] × [−yM, yM] is discretized into a
uniform mesh with identical spacing in the x- and y-directions (∆x = ∆y = ∆). The zero-gradient condition is implemented for
all unknowns at all boundaries. We evolve Eqs. (7) to (11) with the classic MacCormack scheme (MacCormack 1969), a popular
finite-difference algorithm second-order accurate in both space and time (see the textbooks by, e.g., Anderson 1995; Jardin 2010,
for more). The time step ∆t is set via some effective Courant number c B (vAe∆t/∆x)2/3 + (vAe∆t/∆y)2/3 as inspired by Hong (1996).
A value of c = 0.99 is employed for all the presented results. We have verified that varying c between ∼ 0.7 and ∼ 1.3 introduces
no discernible difference, and numerical stability is consistently maintained.

Some remarks on the grid setup are necessary. We start by noting that the spatial spacing ∆ restricts the timeframe in which
numerical solutions make physical sense, an aspect raised by Terradas et al. (2008b, hereafter T08) who numerically solved an
equivalent set of governing equations. Defining the Alfvén frequency ωA(x, y) = kvA(x, y), one expects that some time-dependent
phase-mixing length will emerge as (Mann et al. 1995)

Lph(x, y; t) =
2π

|∇ωA(x, y)|t
, (22)

which characterizes the transverse lengthscales of resonantly generated Alfvénic motions in the nonuniform portions in the system.
It suffices to consider only the nonuniform layer of one tube. Evidently, the shortest phase-mixing length Lmin

ph (t) at a given instant
occurs at the strongest |∇ωA(x, y)|. Equally evident is that this strongest |∇ωA(x, y)| depends only on ρi/ρe and l̄ even when elliptic
tubes are examined. Let Lmin

ph (500) denote Lmin
ph at t = 500b/vAe, before which our computations are consistently terminated. It then

follows from the arguments by T08 that our signals are physically relevant provided Lmin
ph (500) ≥ 2∆. As shown by Table 1, this

criterion is satisfied by the reference grid setup for any set of our computations. Further justification of the spacing ∆, together with
that for our reference domain size [xM, yM], will be presented shortly.
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Table 1. Summary of time-dependent solutions presented in the text

Set ρi/ρe l̄ Lmin
ph (500) Reference Grid Section Remarks

1 3 ≥ 0.2 ≳ 0.032b [xM, yM] = [12b, 12b],∆ = 0.01b §3.1 1-circular-tube
2 5 ≳ 0.182 ≳ 0.019b [xM, yM] = [12b, 10b],∆ = 0.005b §3.2 2-circular-tube

3 3 0.4 0.063b [xM, yM] = [30b, 25b],∆ = 0.01b §4.1 2-elliptic-tube
x-major

4 3 0.4 0.063b [xM, yM] = [30b, 25b],∆ = 0.01b §4.2 2-elliptic-tube
x-minor

Notes. All computations pertain to kb = π/30 or equivalently L/b = 30 for axial fundamentals.

3. Test Computations for Circular Tubes

The MacCormack scheme, while a textbook one, has not been applied to Eqs. (7) to (11). Its applicability is therefore examined
in this section via some test computations for which the time-dependent behavior can be established or expected with independent
methods. Only circular tubes are of interest, and we refer to b(= a) as our tube radius. We start by examining the response of a
one-circular-tube system to axisymmetric (sausage) perturbations, following our previous study (Li et al. 2022) to formulate both
the equilibrium and the initial perturbation. The Fourier-integral-based solutions, presented in Fig. 4 therein, agree closely with our
MacCormack solutions. In particular, no discernible numerical anisotropy shows up even though finite differences are performed on
a Cartesian grid to examine a non-planar equilibrium (see e.g., the review by Sescu 2015, for more on numerical anisotropy). The
rest of this section focuses on kink perturbations.

3.1. Kink Motions in a One-Circular-Tube Setup

This subsection examines kink perturbations in a one-circular-tube configuration, placing the tube center at the origin without loss
of generality. The equilibrium density is realized through Eqs. (16) and (17) by taking [ax = ay = b, X j = 0] and then dropping
the subscript j. Kink motions in such a configuration have been extensively studied (see the review by Nakariakov et al. 2021, and
references therein), readily allowing our MacCormack computations to be compared with known results. By “known” we refer to
two sets of studies. Set one, presented in Sect. 4 of T08, adopts the RR02 implementation to examine the system response to an
initial perturbation of the form

vini(x, y) = vAe exp
[
−

(y − yini)2

σ2

]
ey. (23)

Figure 2 in T08 then presents the time sequence of vy sampled at the tube center for a combination of parameters [ρi/ρe = 3, kR =
π/20, ℓ/R = 0.6] and [yini = 3R, σ = R]. We repeat the same experiment, using Eq. (19) to address notational differences and
adopting an identical computational grid. Our finite-difference results are found to be consistent with T08, despite that the numerical
code therein adopts the finite-volume methodology.

We proceed to perform an additional series of computations to examine whether our code outputs agree with expectations for
ideal kink quasi-modes. Let ω = Ω − iγ denote the complex-valued quasi-mode frequency, and see Ω and γ as positive. With the
kink speed ckink defined as

c2
kink B

ρiv2
Ai + ρev2

Ae

ρi + ρe
, (24)

it is well established that (RR02; see also Goossens et al. 1992 and Soler et al. 2013)

Ω ≈ kckink,

γ

Ω
≈

1
4

l̄
1 − l̄/2

ρi/ρe − 1
ρi/ρe + 1

(25)

in the so-named thin-tube-thin-boundary limit (TTTB, kb ≪ 1 and l̄ ≪ 1). Note that the TTTB expressions are usually formulated in
terms of the RR02 notations [R, ℓ]. Note also that the TTTB results may not hold well beyond their range of applicability (e.g., Soler
et al. 2014; Yu et al. 2021). We therefore also evaluate the mode frequencies numerically with the general-purpose finite-element
code PDE2D (Sewell 1988), computing ideal kink quasi-modes as resistive eigenmodes (see Goossens et al. 2011 for conceptual
clarifications; see also Terradas et al. 2005 for the first introduction of PDE2D to solar contexts). No restriction is necessary for kb
or l̄.

The rest of this subsection is devoted to a fixed combination [ρi/ρe = 3, kb = π/30], allowing only l̄ to vary. Furthermore, the
reference grid (see Table 1) is consistently employed in our time-dependent computations, where kink motions are excited by a
perturbation of the fixed form

vini(x, y)
vAe

= e4 exp
[
−

(x + 3b)2

b2

]
ex. (26)

Article number, page 6 of 29



Shi et al.: Damped kink motions in two-elliptic-tube systems

Equation (26) is essentially identical to Eq. (23) except that vx rather than vy is perturbed. Figure 2a examines a representative case
with l̄ = 0.4, showing the temporal evolution of the x-speed sampled at the tube center (vx(0, 0, t), the solid curve). This vx signal
is seen to feature some rapid variations for t ≲ 15b/vAe. By “rapid” we mean timescales on the order of the transverse Alfvén time
(b/vAi), which derives from the multiple reflections off the tube boundaries of the perturbations that are imparted by the external
driver to the tube. The vx signal transitions toward a regular slower-varying pattern afterwards, becoming monochromatic when
t ≳ 70b/vAe. We choose to leave out the first extremum in this stage for safety, and fit the segment encompassing the next six (the
red asterisks) with an exponentially damped cosine

ffit(t) ∝ exp
(
−

t
τ

)
cos

(
2πt
P
+ ϕ

)
. (27)

The damping envelope from the best-fit is then plotted for the entire duration in Fig. 2a by the dashed curves. One see that this best-fit
envelope, while deduced for some segment, offers a good description for the larger-time behavior as well (say, t ≳ 300b/vAe).

Figure 2b surveys a range of l̄ by plotting the oscillation frequencies (Ωfit, the black open circles) and damping rates (γfit, blue),
which are translated from the best-fit periods and damping times (Ωfit = 2π/Pfit and γfit = 1/τfit). Note that Ω is measured in units
of the external Alfvén frequency ωAe = kvAe, and γ/Ω is presented rather than γ itself. The curves in Fig. 2b further provide the
quasi-mode expectations with either the analytical TTTB expression (Eq. 25, the solid lines) or the PDE2D computations (labeled
“Resistive”, dashed). One sees that the TTTB results provide a rather good approximation to the numerical “Resistive” ones, the
frequencies being practically the same and the damping rates differing by ≳ 10% only when l̄ ≳ 0.4. One further sees that the
open circles agree well with the “Resistive” computations, demonstrating that the internal flow fields practically evolve as an ideal
quasi-mode at least in the interval where the fitting is performed.

3.2. Kink Motions in a Two-Circular-Tube Setup

This subsection examines kink motions in a two-circular-tube configuration, for which the distinction between S x and Ax patterns
becomes necessary. The initial perturbation is therefore chosen to follow Eq. (20), where xini evaluates to d/2 + 3b. Our code
consistently adopts the [b, l̄] notations. However, the mixed usage of the RR02 convention [R, ℓ] turns out to be necessary. The
reason is that this RR02 convention was adopted by SL15 to examine ideal quasi-modes from an eigenvalue-problem perspective
in a configuration physically identical to ours. Briefly put, the study by SL15 is based on the TB-embedded T-matrix formalism of
scattering theory, the pertinent results being most straightforward for our time-dependent computations to be compared with. By
“TB-embedded” we recall that the formalism therein addresses quasi-mode damping with the Thin-Boundary connection formulae.
By “pertinent” we specifically refer to Fig. 4 therein, which presents the ℓ/R-dependencies of the quasi-mode frequencies and
damping rates for a fixed combination [ρi/ρe = 5, d/R = 2.5, kR = π/100]. Note that varying ℓ/R actually impacts our l̄, d/b, and
kb simultaneously (see Eq. 19). We adopt a fixed kb = π/30 to save computational time. This does not matter because we will
measure our timescales or frequencies in appropriate units (say, Ω in ωAe) and the resulting readings do not depend on kR when
kR ≲ π/20 (see Fig. 3 in SL15, and note that kR < kb). Equation (19) readily converts the pair [ℓ/R, d/R] into our [l̄, d/b].

3.2.1. Comparison with Expectations from T-matrix Theory

This subsection tests our time-dependent computations against the SL15 results, to be labeled “T-matrix” for clarity. It suffices to
examine the time sequences of the x-speed sampled at the left tube center (namely, vx(−d/2, 0; t)); the right counterpart is either
identical (for S x) or different only by sign (for Ax). Figure 3 focuses on the choice ℓ/R = 0.4, and plots the sampled vx for (a) the
S x and (b) the Ax patterns by the solid curves. The same analysis as in Fig. 2a is then repeated for both curves, whereby we single
out the six extrema (the red asterisks in Fig. 3) after the transitory phase to perform a fitting with Eq. (27). The best-fit exponential
envelope, plotted by the dashed curves for the entire duration, is seen to well reflect the damping of kink motions for much longer
time. We nonetheless adopt a more conservative perspective to see the internal flow field as evolving as an ideal quasi-mode in the
restricted segment, using the best-fit periods and damping times to evaluate the quasi-mode frequencies and damping rates.

Figure 4 proceeds to examine the ℓ/R-dependencies of (a) the oscillation frequencies (Ω in ωAe) and (b) damping-rate-to-
frequency ratios (γ/Ω). The S x and Ax patterns are discriminated by the different colors. We present the best-fit values from our
time-dependent computations by the open circles, and overplot the T-matrix results by the solid curves for comparison. Note that
these T-matrix curves are read from Fig. 4 of SL15. Our best-fit results are seen to compare favorably with the T-matrix results,
which is particularly true when ℓ/R ≲ 0.3. This statement holds despite the somewhat visible difference in Ω at, say, ℓ/R = 0.2,
where the best-fit value actually deviates from its T-matrix counterpart by only ∼ 2.7%. One further sees that the most significant
departure occurs for the Ax damping rate when ℓ/R = 0.4. However, this difference is rather modest and reads ∼ 21.7% in relative
terms. We therefore conclude that the dispersive properties of kink quasi-modes can be reasonably computed by incorporating the
shortcut TB formulae in the T-matrix framework for all ℓ/R examined here. Our time-dependent results, on the other hand, further
corroborate the SL15 conclusion that Ax motions posses higher frequencies and damp more rapidly than S x ones.

3.2.2. Subtleties with Domain Size and Grid Spacing

This subsection examines the influences that the numerical grid setup may have on our time-dependent solutions. It suffices to
present the representative case where the S x pattern is examined for a specific ℓ/R = 0.4. We start with Fig. 5 by displaying the
temporal evolution of the x-speed at the left tube center (vx(−d/2, 0; t), the solid curves) for a number of domain sizes [xM, yM]
as discriminated by the different colors. The best-fit damping envelopes are further plotted by the dashed curves for reference.
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All computations pertain to a fixed grid spacing ∆ = 0.01b, which is recalled to be different from the reference value in Table 1.
Some differences are seen among the solid curves, the most prominent one being that the monochromatic cycles in the vx signal
are slightly delayed when the domain size increases. We find that this domain size effect arises because the zero-gradient boundary
condition is not fully transparent to impinging motions initiated with the pair of planar perturbations given by Eq. (20). Some
weakly reflected disturbances reach and interact with the composite structure, resulting in some longer time for the internal flow
fields to settle toward a regular pattern for a larger domain. That the domain size effect is primarily attributed to the form of the
initial perturbation is further corroborated by an additional series of computations where we multiply each exponential term in
Eq. (20) by a factor exp(−y2/b2). The dependence on the domain size is then found to disappear in the time-dependent solutions
responding to this localized perturbation. A monochromatic pattern remains clearly visible after some transitory phase, the period
being nearly identical to what we find when Eq. (20) is employed. However, the damping envelope deviates considerably from an
exponential one, making it difficult to examine ideal quasi-modes from an IVP perspective. The reasons for us to stick to Eq. (20)
are twofold. Firstly, what drives the internal field toward a quasi-mode behavior is beyond our scope. Rather, we content ourselves
with deriving the relevant periods and damping times. Secondly, varying the domain size does not influence the best-fit period
(Pfit) and only marginally impacts the best-fit damping time (τfit). In fact, Pfit always evaluates to ∼ 112.5b/vAe for the examined
domains. The value of τfitvAe/b, on the other hand, changes from 320.1 for [xM = 12b, yM = 10b] only modestly to 313.3 for
[xM = 18b, yM = 15b]. An even weaker variation is found when the domain is further extended to [xM = 24b, yM = 20b], in which
case τfitvAe/b attains 314.3.

One may ask why we chose a spacing ∆ = 0.01b different from the reference value (∆ = 0.005b) when examining the domain
size effect. The answer is that the specific values of ∆ do not impact the vx(−d/2, 0; t) sequences for a given domain size if ∆ is
sufficiently small. By “sufficiently” we mean some criterion related to the pair of equilibrium quantities [ρi/ρe, l̄] (see Sect. 2.4). We
reach this statement by varying only ∆ for a substantial fraction of the computations in Fig. 4. Consider only those with the reference
domain size. Figure 6 offers a representative case with ℓ/R = 0.4 by discriminating the vx(−d/2, 0; t) sequences for different ∆ with
the different linestyles. Relative to the computation with the reference ∆ (the red dashed curve), no difference can be discerned when
the spacing is halved (blue dash-dotted) or doubled (black dotted). The reference ∆ is therefore overly demanding of computational
resources for ℓ/R = 0.4, and the same can be said even for the most stringent case where ℓ/R = 0.2 provided that only vx(−d/2, 0; t)
is of interest. That said, varying ∆ necessarily entails differences in other aspects of the flow fields. We illustrate this point by fixing
ℓ/R again at 0.4 and implementing the reference domain size.

Figure 7 presents the spatial profiles of the x-speed along the y-cut through the left tube center at t = 340b/vAe. This instant
is chosen rather arbitrarily to be marginally inside the interval where our fitting procedure is performed. A cut through a tube
center, on the other hand, is chosen to ease the description of some key dynamics. A number of grid spacings are implemented and
discriminated by the different colors. Only the lower half (y ≤ 0) of a y-profile is displayed because the other half is symmetric with
respect to y = 0. The vertical dash-dotted lines represent the borders of the nonuniform layer. Focus for now on this layer, where
one sees a series of ripples in all computations. The most prominent effect associated with ∆ is that the ripples are better resolved
when the numerical grid gets finer, with the computed magnitudes of the local extrema being larger. Physically speaking, however,
all computations prove capable of capturing the phase-mixing physics pertaining to the Alfvén continuum. To demonstrate this, we
note that the Alfvén frequency ωA = kvA is locally symmetric about x = −d/2, meaning ∂ωA/∂x = 0 for the chosen cut. It then
follows from Mann et al. (1995) that the vx profile in the layer can be written as

vx ∝ A(y) cos[ωA(y)t + φ0], (28)

where A(y) is some slow-varying envelope. Let ωAi = kvAi be the internal Alfvén frequency. Some instantaneous phase variation
ϕac(t) = (ωAe − ωAi)t is therefore accumulated over the continuum, leading to Nhc = ⌊ϕac(t)/π⌋ half-cycles with ⌊·⌋ being the floor
function. Consequently, one expects Nhc or Nhc + 1 extrema, where the uncertainty derives from the phase φ0 in Eq. (28). Plugging
in the numbers yields a ϕac/π of 6.27, and therefore 6 or 7 extrema are expected. This expectation is faithfully reproduced in Fig. 7.
The same can actually be said for all instants when the internal field behaves like a quasi-mode. Now move on to the portions outside
the nonuniform layer. The only difference that one can barely tell for different ∆ appears in the external flow fields immediately
adjacent to the layer. On the other hand, no difference can be discerned in the internal motions.

Figure 8 examines the grid spacing effect from the energetics perspective, differentiating ∆ by the different colors. Equations (12)
to (15) are employed to evaluate all energetics-related quantities, and we take the area Q therein to be a box [−(d/2 + 1.2b), (d/2 +
1.2b)] × [−1.2b, 1.2b]. Figure 8a performs a gross energy balance analysis over Q by presenting the temporal profiles of the time-
derivative of the instantaneous total energy (dEtot/dt, the solid curves) and those of the instantaneous energy flux into Q (−F,
asterisks). The asterisks of different colors cannot be told apart, the reason being that all computations yield an identical set of
dependents at the boundaries of Q. Some difference nonetheless shows up among the solid curves, despite that dEtot/dt should
balance F (see Eq. 12). As intuitively expected, gross energy conservation is maintained for a longer duration when a finer grid is
employed, with some ∼ 30% difference between dEtot/dt and −F staring to appear at t ∼ 90b/vAe (∼ 270b/vAe) when ∆ = 0.01b
(0.0025b). Note that the examined Q is the union of three mutually exclusive portions, namely the tube interiors (to be denoted
as “int”), nonuniform layers (“layer”), and exterior (“ext”). Figure 8b then displays, against time, the energies in these individual
portions. By far the most significant effect that the grid spacing has on the energetics is that the energy in the nonuniform layer
is increasingly under-estimated when ∆ increases. This is understandable because small-scale variations in the layer are less well
resolved if our numerical grid goes coarser (see Fig. 7). However, there exists only some weak difference among the Eext curves
because only the flows in the immediate neighborhood of either tube are somehow impacted by choices of ∆. Furthermore, the
internal energies (Eint) consistently remain the same when ∆ is varied, reinforcing the notion that ∆ has no influence on the internal
flow field.
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4. Kink Motions in a Two-Elliptic-Tube Setup

Let us start by summarizing several numerical aspects of our computations. Overall, we have verified that the MacCormack scheme
is appropriate for our purposes, with no issue arising from the application to nonplanar structures of the finite-difference method-
ology on a Cartesian grid. The zero-gradient boundary condition is somehow not fully transparent to perturbations excited by our
planar drivers, and the domain size somehow impacts how the internal flows transition to a quasi-mode behavior. However, this
domain size effect is practically negligible on the best-fit periods (Pfit) and damping times (τfit) that we derive for the quasi-mode
stage. Likewise, the computed internal flows are not affected by the grid spacing ∆ provided that ∆ is sufficiently small.

This section is devoted to kink motions in a two-elliptic-tube configuration, for which the x-major and x-minor orientations
need to be discriminated. The reference grid ([xM = 30b, yM = 25b,∆ = 0.01b], see Table 1) will be consistently adopted, enabling
a meaningful comparison between the tube orientations. This reference grid sufficies for our purposes. The notations [a, b, l̄] are
adopted throughout this section, where all computations pertain to a fixed combination of physical parameters [ρi/ρe = 3, l̄ =
0.4, kb = π/30]. We adjust only the dimensionless tube separation (d/b) and the ratio of the semi-major to semi-minor axis (a/b)
for a given orientation and a given perturbation pattern (see Eq. 21). Tube overlapping is always avoided when the values of a/b
and d/b are experimented with. The equilibria are consistently perturbed with Eq. (20).

4.1. S x and Ax Motions for the x-major Orientation

This subsection addresses the x-major orientation. We start with Fig. 9 to present the temporal evolution of the x-speed sampled at
the left tube center (vx(−d/2, 0; t), the solid lines) for both (a) the S x and (b) the Ax motions. The tube separation is fixed at d = 5b,
whereas a number of values are examined for a/b as discriminated by the different colors. Only the variations after the rapid-varying
phase are of interest for any vx sequence. We somehow emphasize the segment exactly encompassing the six extrema starting with
the one labeled by the relevant asterisk, performing a fitting procedure with Eq. (27). A best-fit exponential envelope results, with
an example plotted over the entire duration for the case where a/b = 2.5. With this example we demonstrate that an exponentially
damped cosine is in general adequate for describing the vx sequences after the rapid-varying phase. The best-fit periods and damping
times thus derived will be be understood as pertaining to an ideal quasi-mode.

The temporal attenuation of the internal flow fields means energy redistribution in ideal MHD. Let us take the case with a/b = 2.5
in Fig. 9, and note that the two tubes are actually in contact (d = 5b = 2a). Figure 10 presents the spatial distribution of the velocity
fields (v = vxex + vyey, the blue arrows) and the instantaneous energy density (ϵ, filled contours) for (a) the S x and (b) Ax motions
at an arbitrarily chosen instant t = 260b/vAe. A subarea of the second quadrant is singled out by each inset to emphasize the ϵ
distributions in the nonuniform layers of both tubes, with the red curves delineating the layer boundaries. The white curve further
indicates where the local Alfvén frequency equals the quasi-mode frequency. Evidently, the white and red curves are contours of the
equilibrium density, and therefore part of the relevant ellipses (see Eq. 16). Figure 10 is actually taken from the attached animation.
The arrows and filled contours are plotted in a way that it makes sense to compare the v or ϵ strengths not only in one snapshot but
between different instants for a given orientation. In particular, the darker a portion is, the larger the value of ϵ therein.

Consider first the ambient fields for both perturbation patterns, where by “ambient” we refer to the flows some distance away
from the tubes. Likewise, by “tube flow” we mean the field excluding the ambient flow, and by “internal flow” we refer specifically to
the uniform portion inside either tube. For both patterns, one sees from the animation that the ambient flows tend to vary more rapidly
than the internal ones. This feature is particularly clear for the S x pattern because the ambient flows tend to be substantially stronger
than the internal flows as well. Regardless, a periodogram analysis yields that the ambient flows follow primarily the external
Alfvén frequency ωAe, whereas the variations of the internal flows are by far dominated by the lower quasi-mode frequency. That
the ambient motions are not coordinated with the internal ones is a result of the form of the initial exciter given by Eq. (20). The
relevant physics is actually very similar to what happens in the T08 study despite the configurational differences, the key being the
y-invariance of Eq. (20). It proves easier to explain this by considering a uniform equilibrium with density ρe, for which Eqs. (7) to
(11) can be combined to yield a Klein-Gordon equation if the y-dependence is dropped (see Eq. 1 in Terradas et al. 2005). Suppose
that an individual component in Eq. (20) is applied. A dispersive fast wave then results, whereby any fluid parcel in the system
eventually end up in some oscillatory wake at the Alfvén frequency ωAe (see Fig. 1 in Terradas et al. 2005). Oscillatory wakes
turn out to still exist in the ambient flow when the two elliptic tubes are introduced, and when an additional planar perturbation is
implemented. Note that the initial perturbations are external to our tubes. Note further that overall the large-time behavior for the
ambient flow actually comprises two component wakes, each being the response to the corresponding component driver. The two
component wakes tend to interfere constructively (largely destructively) for the S x (Ax) pattern, thereby explaining the strength of
the ambient flow relative to the internal one.

Now examine the tube flows. Focusing on the blue arrows, one sees from Fig. 10 that the gross patterns for both S x and Ax
are similar to Fig. 2 in L08 despite that a two-circular-tube equilibrium with piece-wise constant profile was addressed therein.
Specifically, the internal velocity field is more or less uniform, and a pair of vortical motions develop at the edge of either tube.
These two features, combined with the overall symmetric properties of the internal field about x = 0, demonstrate the robustness
of the classification scheme for lower-order kink motions. The primary difference from L08, on the other hand, is that the vortical
motions gradually evolve from a simple dipolar behavior (see the first several instants in the animation) into multiple shearing layers
(Fig. 10). This evolution is well known for kink motions in isolated tubes with either circular (e.g., Terradas et al. 2008a; Pascoe
et al. 2010; Antolin et al. 2014) or elliptic cross-sections (e.g., Ruderman 2003; Guo et al. 2020). What Fig. 10 demonstrates is then
that tube interactions do not compromise the phase-mixing physics behind this evolution. That said, tube interactions do impact the
detailed development of the small-scale shears, as evidenced by the differences in the velocity fields for the two different perturbation
patterns. Suppose that tube interactions are negligible. The tube flows are then expected to be identical for the S x and Ax patterns,
meaning in particular a symmetric distribution of the energy density (ϵ) with respect to the minor axis (x = −d/2 = −2.5b here).
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However, this expectation roughly holds only for the S x pattern (Fig. 10a inset), whereas the left portion in the left tube is favored
in the ϵ distribution for the Ax pattern (Fig. 10b inset). Besides phase-mixing, a closely related aspect that is not fundamentally
compromised by tube interactions is the resonant interplay between the quasi-mode and the Alfvén continuum (see Soler & Terradas
2015 and references therein for the subtle distinction between resonant absorption and phase-mixing). By this we refer to two
features common to the S x and Ax patterns, and we concentrate on the insets in the animation. Firstly, the attenuation of the internal
field is accompanied by the accumulation of perturbation energies in the nonuniform layer. Secondly, this energy accumulation leads
to a localized ϵ distribution, with the strongest perturbations tending to the white resonance contour as time proceeds for roughly one
quasi-mode period after the rapid-varying phase. Overall with Fig. 10 we conclude that the notions of phase-mixing and resonant
absorption remain applicable to kink motions in our two-elliptic-tube configuration.

Figure 11 further examines the phase-mixing process by showing the y-cuts of the x-speeds through the left tube center for
both (a) the S x and (b) the Ax patterns. A number of instants are rather arbitrarily chosen and discriminated by the different colors.
The vertical dotted lines mark the borders of the nonuniform layer, where shearing motions (∂vx/∂y here) with increasingly small
scales are seen to develop as time proceeds. We choose to quantify this development by relating the number of the vx extrema
(Nextrm(t)) to the instantaneous phase variation accumulated over the Alfvén continuum (ϕac(t), see the discussion on Eq. 28). Note
that ϕac(t) = (ωAe − ωAi)t is identical for both perturbation patterns, corresponding specifically to [2.82, 4.23, 5.64] half-cycles for
the examined instants. One then expects [2+1

+0, 4
+1
+0, 5

+1
+0] extrema in the vx profiles in Figs. 11a and 11b, which is indeed the case. As

can be readily verified, that Nextrm(t) = ⌊[ϕac(t)/π⌋] at these instants actually constrains the phase φ0 in Eq. (28) to a very narrow
range [qπ, (q + 0.19)π] with q = 0, 1.

Figure 12 proceeds to examine (a) the periods P and (b) damping-time-to-period ratios τ/P of kink quasi-modes pertaining to
both the S x (the solid curves) and the Ax (dashed) patterns, showing how P and τ depend on the ratio of the semi-major to semi-minor
radius (a/b) for a given tube separation (d). We also examine a number of d as discriminated by the different colors. Note that this
survey adopts a fixed combination of physical parameters [ρi/ρe = 3, l̄ = 0.4, kb = π/30]. The same set of parameters is additionally
adopted to evaluate P and τ/P of the kink quasi-mode for an isolated circular tube with the resistive eigenmode approach (see
Sect. 3.1), the results being plotted by the horizontal lines for comparison. Note that the values for P (in units of the axial Alfvén
time Taxial = 2π/ωAe = 2L/vAe) and τ/P vary little if kb = πb/L is further reduced, meaning that little will change if one examines
axial fundamentals in AR loops with much larger L/b than adopted here. Note further that a/b is required not to exceed d/2b for
a given d/b such that tube overlapping is avoided. For any given pair [a/b, d/b], Fig. 12 indicates that the Ax motion possesses a
shorter period and damps more efficiently than the S x motion. This behavior is identical to what SL15 found for two-circular-tube
configurations. The argument therein is that Ax motions are more “forced”; the two tubes move largely in a synchronous fashion
for the S x pattern, whereas the flows in between the two tubes periodically “collide” when the Ax pattern is examined. The same
argument applies here although elliptic tubes are addressed, with the insets of Fig. 10b already hinting at a more forced behavior for
Ax motions. Also similar to SL15 is that, for a given a/b, the difference between the values of P (or τ/P) for the S x and Ax motions
tends to decrease monotonically with d. This agrees with the intuitive expectation for a weaker tube interaction.

Let us pay more attention to the overall behavior for P to increase monotonically with a/b for a given d/b. Somehow subtle
is that tube interactions also have some effect, because increasing a/b actually brings the two tubes effectively closer even if the
distance between the tube centers is fixed. Regardless, this tube interaction only plays a minor role, given that the monotonical
a/b-dependence takes place for different d and for the S x and Ax motions alike. One may therefore expect the same a/b-dependence
for isolated elliptic tubes (or equivalently d/b → ∞), in which case it is no longer necessary to distinguish between the S x and Ax
patterns. This was indeed seen in our previous IVP study (Guo et al. 2020), where we offered some heuristic argument similar to the
earlier one by Ruderman (2003). For simplicity, suppose that the equilibrium configuration is transversely structured in a piece-wise
constant manner. The heuristic argument then relies on the observation that the velocity normal to the tube edge plays a central
role for an isolated density-enhanced tube to communicate with its surroundings. Evidently, a larger a/b makes the tube edge more
elongated in the x-direction. Their velocities primarily x-directed, the fluid parcels in the tube interior therefore become less aware
of the surroundings, meaning some enhanced effective inertia and hence a longer period. The same argument can be invoked in this
study, despite the subtlety that the fluids surrounding one tube actually embed another tube.

Figure 12 allows us to say a few words on the seismological implications of this subsection. Let us focus on axial fundamentals,
and consider only the S x motion for [a/b = 2.5, d/b = 5] to ease our description. By “seismological implications” we refer to the
inference of the axial Alfvén time (Taxial = 2L/vAe) and the dimensionless nonuniform layer width (l̄). Now assume that the relevant
oscillating tubes possess the “true” dimensionless values [ρi/ρe = 3, l̄ = 0.4] as implemented in our computations (note that L/b is
immaterial when sufficiently large). Let Pobs and (τ/P)obs be the measured values of the period and damping-time-to-period ratio,
and we take (τ/P)obs = 6.39 to comply with Fig. 12. One therefore deduces a “true” value of Pobs/1.6 for Taxial, which is recalled
to be dimensional. Now suppose that neighboring elliptic tubes with the x-major orientation are imaged in, say, the EUV when the
line of sight lies in the tube plane (see Fig. 1a), meaning that the tubes may be readily mistaken as circular ones with a tube radius
of a (rather than b). Suppose further that the density contrast is measured to be ρi/ρe = 3. Now let us follow the customary practice
to infer Taxial and l̄ by seeing the S x motion as a kink quasi-mode in an isolated circular tube. It matters little regarding whether one
assigns a or b to the tube radius. The dimensionless quasi-mode period P/Taxial depends essentially only on ρi/ρe, always attaining
∼ 1.42 when l̄ ≲ 0.6 (see the green horizontal line in Fig. 12a; see also Fig. 2b). One therefore deduces a value of Pobs/1.42 for
Taxial, which differs from the true value by ∼ 13%. However, it is considerably more problematic when (τ/P)obs is invoked to infer
l̄. Employing the resistive eigenmode approach, we find that a (τ/P)obs = 6.39 results in a l̄ ≈ 0.18, which underestimates the true
value by ∼ 55%. One may argue that this difference is not that significant; after all the customary seismological practice yields the
correct qualitative picture that the oscillating tube possesses a thin boundary. Our point, however, is that care needs to be exercised
when (τ/P)obs is put to quantitative use, with the uncertainties in the deduced dimensionless layer width l̄ readily exceeding ∼ 50%
if one neglects the combined effect of tube cross-sectional shapes and tube interactions.

Article number, page 10 of 29



Shi et al.: Damped kink motions in two-elliptic-tube systems

4.2. S x and Ax Motions for the x-minor Orientation

This subsection addresses the x-minor orientation. We start with Fig. 13 where the same set of physical quantities as in Fig. 9 is
employed, and the time sequences for the x-speed sampled at the left tube center are presented in an identical format. A fitting
procedure is once again performed for any vx sequence over the duration exactly enclosing the six extrema starting with the one
indicated by the pertinent asterisk. Despite this, the best-fit exponential envelopes are seen to describe the large-time behavior
equally well. We therefore take the view that the best-fit periods (P) and damping times (τ) pertain to the ideal quasi-modes
supported by our two-elliptic-tube configuration.

Figure 14 specializes to the case with [a/b = 2.5, d/b = 5], following the same format as in Fig. 10 to present the velocity fields
(the blue arrows) and the spatial distributions of the perturbation energy density (ϵ, filled contours) at a representative instant. Note
that the tubes are quite some distance apart in this case. Note also that Fig. 14 is a snapshot extracted from the attached animation.
Focusing on the velocity fields, one can safely conclude from the animation that the notations of S x and Ax make physical sense as
proposed by L08 for two-circular-tube systems. For both perturbation patterns, the insets in the animation further indicate that the
attenuation of the internal flows is accompanied by the enhancement of perturbation energy density ϵ in the nonuniform layers, with
the localization of ϵ strongly mediated by the Alfvén resonance. This latter point can be readily drawn from the close association of
the darkest portion in either ϵ distribution with the white curve marking where the quasi-mode frequency matches the local Alfvén
frequency.

Figure 15 presents, in a format identical to Fig. 11, the y-cuts of the x-speed through the left tube center for a number of
arbitrarily chosen instants. The aim is also to show the key role that phase-mixing plays for the gradual development of shearing
motions with increasingly small scales in the nonuniform layers. We follow Fig. 11 to quantify this with the aid of Eq. (28), once
again counting the instantaneous number Nextrm(t) of the vx extrema. The pertinent instantaneous phase variations (ϕac(t)), on the
other hand, are the same as in Fig. 11 and read [2.82, 4.23, 5.64]π for the examined instants. However, somehow different is that
the relevant values for Nextrm now may deviate from ⌊ϕac/π⌋, attaining specifically [3, 4, 5]. This deviation is readily attributable
to the phase φ0 in Eq. (28). Conversely, this set of deviations can be readily verified to constrain φ0 to a rather narrow range of
[(q + 0.19)π, (q + 0.37)π] with q = 0, 1.

Figure 16 moves on to survey (a) the quasi-mode periods P and (b) damping-time-to-period ratios τ/P for a substantial range
of combinations [a/b, d/b]. This figure is identical in format to Fig. 12. The values examined for the tube separation d consistently
avoid tube overlapping, and hence there is no need to constrain the ratio of the semi-major to semi-minor axis (a/b) for a given
d/b. Examine Fig. 16a first, from which one sees the expected monotonic behavior for the differences between the S x and Ax
periods to decrease with d/b for a given a/b. For a given separation d/b, one further sees that the values of P tend to decrease
monotonically with a/b for the S x and Ax motions alike. However, tube interactions remain possible to be partly responsible for
this a/b-dependence, because the area between the two tubes actually broadens with a/b even if d/b is fixed. This tube-interaction
effect can hardly be dismissed given that the S x and Ax values deviate more strongly when a/b increases for a given d/b. Having
said that, it remains possible to partly explain the monotonic a/b-dependence of P by invoking the inertia arguments initially offered
for isolated density-enhanced elliptic tubes. Note that the tube edges are now more elongated in the y-direction, whereas the fluids
parcels in either tube interior remain to oscillate primarily in the x-direction. It therefore holds that an increase in a/b makes the
internal fluid parcels better aware of the external medium, meaning some reduced effective inertia and hence a shorter period.

Consider now Fig. 16b where the damping-time-to-period ratios (τ/P) are examined. Two features arise when a/b ≲ 1.5, one
being that Ax motions attenuate more efficiently than S x ones, the other being that the differences between the S x and Ax values tend
to decrease with tube separation. These features resemble what happens for two-circular-tube systems, and are expected because the
cross-sectional shapes are not far from circular. However, the behavior of τ/P at larger a/b is considerably more complicated than
in Fig. 12b where the x-major orientation is addressed. By “complicated” we specifically refer to the nonmonotoic d/b-dependence
of τ/P for either perturbation pattern. Take the case with a/b = 2.5. When d/b increases, one sees an increase followed by some
decrease in τ/P for the S x motion, whereas τ/P tends to decrease for the Ax motion. This latter simplicity is only apparent, because
τ/P is bound to increase with d/b again such that the Ax values eventually join their S x counterparts when the tubes are sufficiently
separated. We have verified that the somehow involved behavior of τ/P is not of numerical origin (see Sect. 3). Furthermore, it
matters little as to how to choose the segment of a vx sequence for fitting, provided that this segment starts sufficiently later than
the rapid-varying phase (see Fig. 13). The most likely reason is then that the perturbations in between the two tubes depend on a/b
and d/b in an intricate fashion, and hence an intricate dependence on a/b and d/b of the efficiency of tube interactions. Regardless,
the reason behind the d/b-dependence of τ/P is also behind, say, the nonmonotonic a/b-dependence of τ/P for Ax motions for a
given d/b (see the dashed curves), and the occasional behavior for S x motions to damp more efficiently (compare the black solid
and dashed curves).

Some remarks can be offered regarding the seismological implications of Fig. 16. Only axial fundamentals are of interest, and
the tube plane is once again assumed to be perpendicular to the plane-of-sky. We assess what uncertainties the customary practice
may introduce to the axial Alfvén time Taxial = 2L/vAe and dimensionless layer width l̄ by neglecting the joint effects of cross-
sectional shapes and tube interactions. The procedure is identical to what we performed for the x-major orientation; we accordingly
choose the Ax values for [a/b = 2.5, d/b = 3] given that they deviate the most from the horizontal lines. Consider the period first.
One infers a true value of Taxial = Pobs/1.13 with Fig. 16a, whereas the customary practice remains to yield a Taxial ≈ Pobs/1.42
or equivalently some underestimation by ∼ 20%. This uncertainty in Taxial is larger than for the x-major orientation. Now taking
(τ/P)obs = 3.44 from Fig. 16b as measured, one deduces with the customary practice a dimensionless layer width of l̄ = 0.25 or
some underestimation of the true value (l̄ = 0.4) by ∼ 38%. Somehow smaller than for the x-major case, this uncertainty remains
substantial enough to corroborate our claim that the inhomogeneity scales deduced with the customary practice need to be treated
with caution.
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5. Summary

With coordinated transverse displacements in neighboring active region (AR) loops in mind, we have addressed damped kink
motions in straight equilibria where two identical parallel density-enhanced tubes with elliptic cross-sections (elliptic tubes) are
embedded in an ambient corona. Linear, ideal, pressureless MHD was adopted throughout. We concentrated on axially standing
motions, formulating the ensuing two-dimensional (2D) initial value problem (IVP) in the plane transverse to the equilibrium
magnetic field. We identified the direction connecting the tube centers as horizontal, discriminating two tube orientations where
either the major (dubbed “x-major”) or the minor (“x-minor”) axis is horizontally placed. The system evolution was initiated with
external velocity drivers, implemented in such a way that the internal flow fields are primarily horizontal and are either symmetric
(S x) or anti-symmetric (Ax) with respect to the vertical axis about which our equilibrium configuration is symmetric. The temporal
evolution of the velocity perturbations at tube centers was of particular interest, allowing us to identify the quasi-mode stage as
where the monochromatic time sequence follows an exponentially damped envelope. We paid special attention to how the quasi-
mode periods and damping times depend on the tube separation and the cross-sectional aspect ratio, thereby addressing the impact
on the dispersive properties of damped kink motions from the joint effects of tube interactions and cross-sectional shapes.

Our numerical findings are summarized as follows. When two-circular-tube equilibria are examined as a special case, the quasi-
mode periods and damping times found with our IVP approach are consistent with the modal analysis by Soler & Luna (2015),
thereby independently justifying both the analytical T-matrix approach and the numerical results therein. We further find that the
notions of resonant absorption and phase-mixing are not undermined when elliptic cross-sections are allowed for. Specifically, the
nonuniform layers around tube boundaries feature both the development of velocity shears with increasingly small scales and the
energy accumulation around where the local Alfvén frequency matches the quasi-mode frequency. The Ax motions are found to pos-
sess shorter periods and damp more rapidly than the S x motions for the x-major orientation, in which case the periods and damping
times for both perturbation patterns tend to increase with the major-to-minor-axis ratio. When the x-minor orientation is addressed,
the Ax motions remain to oscillate more rapidly than the S x ones. However, the periods for both patterns tend to decrease monoton-
ically with the major-to-minor-axis ratio. Somehow subtle are the joint effects of tube interactions and cross-sectional shapes on the
damping times, which may depend non-monotonically on the tube separation or the major-to-minor-axis ratio. Furthermore, the Ax
motions may occasionally damp less efficiently. Neglecting these joint effects may introduce some uncertainty of ∼ 20% (∼ 50%)
to the axial Alfvén time (the inhomogeneity lengthscale) deduced with the period (damping time). Consequently, care may need to
be exercised when the damping times of kink motions are put to standard seismological practice built on wave theories for isolated
circular tubes.

Some further remarks seem necessary before closing. Firstly, we note that our IVP approach is not restricted to two-tube systems
but capable of handling rather generic 2D inhomogeneities. In particular, axially standing motions may be examined for straight
configurations comprising multiple tubular structures with arbitrary cross-sections. Collective motions in multiple neighboring
resolved loops will then be better understood, together with the motions in those apparently isolated loops that actually involve a
multitude of unresolved strands (see e.g., Sect.4.2 of the review by Reale 2014 for more on this multi-stranded nature of AR loops).
Secondly, that kink motions are resonantly absorbed for configurations with continuous transverse structuring is actually much-
expected (e.g., the review by Goossens et al. 2011). However, somehow largely unnoticed is that the decayless regime was also
observed for coordinated kink motions in adjacent AR loops (Wang et al. 2012). Accept that the transverse structuring is likely to
be continuous in the relevant configurations. It then becomes necessary to address what counteracts the ensuing resonant damping,
thereby bringing the understanding of decayless kink motions in multi-tube systems closer to the level of sophistication reached for
the decayless regime in isolated tubes (e.g., Nakariakov et al. 2016; Guo et al. 2019b; Ruderman et al. 2021). Thirdly, coordinated
motions in multiple tubular structures were identified not only in AR loops but also in, say, groups of prominence threads (see e.g.,
Arregui et al. 2018, for a review). To our knowledge, so far the only theoretical investigation in the prominence context was the
one by Soler et al. (2009) with the T-matrix formalism. An IVP perspective is expected to be as fruitful, provided that one further
account for, say, the effects associated with partial ionization (e.g., the review by Ballester et al. 2018).
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Fig. 1. Schematics showing both the two-elliptic-tube configuration and lower-order kink motions therein. Illustrated in (b) are two identical tubes
with elliptic cross-sections and separated in the x-direction. The y − z plane is identified as the tube plane, the meaning of which is clearer in the
curved representation in panel a. This study examines only two tube orientations (panels c and d), with the one labeled “x-major” (“x-minor”)
corresponding to the situation where the major- (minor-)axis of either tube is aligned with the x-axis. The tube centers are placed symmetrically
with respect to the y-axis. Only axial fundamentals are considered, making it possible to examine the three-dimensional (3D) wave fields with a
2D approach. Lower-order kink motions are classified according to their internal flow fields in the apex plane (panels c or d); hence such symbols
as S x and Ay. See text for more details.
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Fig. 2. Kink motions in isolated tubes with circular cross-sections for a fixed pair of density contrast and dimensionless axial wavenumber
[ρi/ρe = 3, kb = π/30]. A specific dimensionless layer width l̄ = 0.4 is examined in (a), the solid curve showing the x-speed sampled at the tube
center (vx(0, 0, t)). An exponentially damped cosine is employed to fit the segment encompassing the extrema shown by the red asterisks, with the
resulting damping envelope plotted over the entire interval (the dashed curves). Presented in (b) are the l̄-dependencies of the mode frequencies
(Ω, the black curves and symbols) and the ratios of the decay rate to the frequency (γ/Ω, blue) obtained with various methods. The solid curves
represent the analytical thin-tube-thin-boundary (TTTB) expectations with Eq. (25). No assumption on tube length or layer width is imposed in the
“Resistive” computations (the dashed curves) that evaluate ideal quasi-modes as resistive eigenmodes. Shown by the open circles are the best-fit
results from our time-dependent computations, where kink motions are consistently excited with a perturbation given by Eq. (26).
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Fig. 3. Kink motions with (a) S x and (b) Ax patterns in a two-circular-tube configuration. Plotted are the time sequences of the x-speed sampled
at the left tube center (vx(−d/2, 0; t), the solid curves) together with the best-fit damping envelopes (dashed). The time-dependent computations
pertain to a fixed combination [ρi/ρe = 5, ℓ/R = 0.4, d/R = 2.5, kb = π/30], with ℓ and R being the nonuniform layer width and mean tube radius
implemented by Ruderman & Roberts (2002). A fitting procedure with an exponentially damped cosine is performed over the duration exactly
encompassing the extrema indicated by the red asterisks, even though the best-fit envelopes are plotted for the entire time interval. Kink motions
are excited with the perturbation described by Eq. (20) with appropriate signs.
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Fig. 4. Comparison of (a) the oscillation frequencies Ω and (b) damping rates γ of ideal quasi-modes deduced from time-dependent computations
(the open circles) with those expected with the T-matrix formalism (solid lines). With different colors we discriminate the results for the S x and Ax
patterns. The T-matrix curves are read from Fig. 4 of Soler & Luna (2015, SL15). Shown here is how Ω and γ/Ω depend on ℓ/R, while the rest of
the parameters is fixed at [ρi/ρe = 5, d/R = 2.5, kb = π/30]. The [ℓ/R, d/R] notations follow from SL15 for the ease of comparison.
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Fig. 5. Temporal profiles of the x-speed sampled at the left tube center (vx(−d/2, 0; t), the solid curves) for a number of domain sizes as labeled.
Overplotted by the dashed curves are the best-fit damping envelopes. All computations pertain to the S x motion for a fixed combination of physical
parameters [ρi/ρe = 5, ℓ/R = 0.4, d/R = 2.5, kb = π/30]. The grid spacing is fixed at ∆ = 0.01b.
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Fig. 6. Temporal profiles of the x-speed sampled at the left tube center for a number of grid spacings as labeled. All computations pertain to the
S x motion for a fixed combination of physical parameters [ρi/ρe = 5, ℓ/R = 0.4, d/R = 2.5, kb = π/30]. The computational domain size is fixed at
[xM = 12b, yM = 10b].
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Fig. 7. Distributions of the x-speed at t = 340b/vAe along the y-cut through the left tube center for a number of grid spacings as labeled. All
computations pertain to the S x motion for a fixed combination of physical parameters [ρi/ρe = 5, ℓ/R = 0.4, d/R = 2.5, kb = π/30]. The
computational domain size is fixed at [xM = 12b, yM = 10b]. Only the lower half (y ≤ 0) is shown for any y-profile, the other half being symmetric
about y = 0. The vertical dash-dotted lines delineate the borders of the nonuniform layer.
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Fig. 8. Temporal profiles of some energetics-related quantities for several grid spacings as differentiated by different colors. Energetics are
consistently examined for a box [−(d/2 + 1.2b), (d/2 + 1.2b)] × [−1.2b, 1.2b], in which the three mutually exclusive constituents are the tube
interiors, nonuniform layers, and exterior. Shown in (a) are the time derivative of the total perturbation energy in the box (dEtot/dt, the sold
curves), together with the instantaneous energy flux into this box (−F, asterisks). Further plotted in (b) are the instantaneous total energy in the
interiors (Eint), nonuniform layers (Elayer), and the exterior (Eext). All computations pertain to the S x pattern for a fixed combination of physical
parameters [ρi/ρe = 5, ℓ/R = 0.4, d/R = 2.5, kb = π/30]. The computational domain size is fixed at [xM = 12b, yM = 10b].
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Fig. 9. Kink motions with (a) S x and (b) Ax patterns in a two-elliptic-tube configuration with x-major orientation. Plotted are the time sequences
of the x-speed sampled at the left tube center (vx(−d/2, 0; t), the solid curves) for a number of ratios of the semi-major to semi-minor axis (a/b) as
discriminated by the different colors. A fitting procedure is performed, for each sequence, over the duration encompassing the six extrema starting
with the one denoted by an asterisk. The best-fit damping envelope is plotted for the entire sequence, but only for a/b = 2.5 to avoid over-crowding
the plots. The computations pertain to a fixed combination [ρi/ρe = 3, l̄ = 0.4, d/b = 5, kb = π/30].
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Fig. 10. Representative snapshots of the velocity field (the blue arrows) and energy density distribution (ϵ, filled contours) for (a) the S x motion
and (b) the Ax one in a two-elliptic-tube configuration with the x-major orientation. The inset in each panel emphasizes the distribution of ϵ in a
representative nonuniform layer, whose boundaries are shown by the red solid curves. The white contour indicates where the Alfvén frequency
ωA = kvA equals the quasi-mode frequency deduced with the fitting procedure. Both computations pertain to a fixed combination [ρi/ρe = 3, a/b =
2.5, l̄ = 0.4, d/b = 5, kb = π/30]. This snapshot is extracted from the animation attached to the current figure. The ϵ contours in all snapshots
are filled in such a way that darker portions correspond to larger ϵ. The blue arrows are also consistently scaled in all snapshots such that longer
arrows correspond to stronger velocities.
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Fig. 11. Distributions of the x-speed along the y-cut through the left tube center at a number of instants as labeled. Panels (a) and (b) correspond
to the S x and Ax motions, respectively. The vertical dotted lines represent the borders of the nonuniform layer. Only the lower half (y < 0) of a
y-profile is displayed, the other half being symmetric with respect to y = 0. All computations are conducted for the x-major orientation with a
fixed combination of physical parameters [ρi/ρe = 3, l̄ = 0.4, d/b = 5, kb = π/30].
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Fig. 12. Dependencies of (a) the quasi-mode periods (P) and (b) damping-time-to-period ratios (τ/P) on the ratio of semi-major to semi-minor
axis (a/b) for kink motions in a two-elliptic-tube configuration with the x-major orientation. The S x and Ax patterns are discriminated by the
linestyles. A number of dimensionless tube separations (d/b) are examined as differentiated by the different colors, with d/b constrained to avoid
tube overlapping. All results pertain to a fixed combination of physical parameters [ρi/ρe = 3, l̄ = 0.4, kb = π/30]. The horizontal lines represent
the results for an isolated circular tube with the same set of parameters.
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Fig. 13. Similar to Fig. 9 but for the x-minor orientation.
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Fig. 14. Similar to Fig. 10 but for the x-minor orientation. The associated animation is also attached.
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Fig. 15. Similar to Fig. 11 but for the x-minor orientation.
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Fig. 16. Similar to Fig. 12 but for the x-minor orientation.
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